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A B S T R A C T

A unified approach to contact-less and low-cost video processing for automatic detection of neonatal diseases
characterized by specific movement patterns is presented. This disease category includes neonatal clonic
seizures and apneas. Both disorders are characterized by the presence or absence, respectively, of periodic
movements of parts of the body—e.g., the limbs in case of clonic seizures and the chest/abdomen in case of
apneas. Therefore, one can analyze the data obtained from multiple video sensors placed around a patient,
extracting relevant motion signals and estimating, using the Maximum Likelihood (ML) criterion, their possible
periodicity. This approach is very versatile and allows to investigate various scenarios, including: a single Red,
Green and Blue (RGB) camera, an RGB-depth sensor or a network of a few RGB cameras. Data fusion principles
are considered to aggregate the signals from multiple sensors. In the case of apneas, since breathing movements
are subtle, the video can be pre-processed by a recently proposed algorithm which is able to emphasize small
movements. The performance of the proposed contact-less detection algorithms is assessed, considering real
video recordings of newborns, in terms of sensitivity, specificity, and Receiver Operating Characteristic (ROC)
curves, with respect to medical gold standard devices. The obtained results show that a video processing-based
system can effectively detect the considered specific diseases, with increasing performance for increasing
number of sensors.

1. Introduction

Monitoring neonatal movements may be exploited to detect symp-
toms of specific disorders. In fact, some severe diseases are character-
ized by the presence or absence of rhythmic movements of one or
multiple body parts. Clonic seizures and apneas can be identified by
sudden periodic movements of specific body parts or by the absence of
periodic breathing movements, respectively.

Seizures are clinically defined as paroxysmal alterations of the
neurological functions (i.e., behavioral, motor or autonomic function)
and represent a distinctive symptom of acute brain dysfunction in the
newborn [1]. Leading causes of neonatal seizures are intracranial
haemorrhage, hypoxic-ischaemic encephalopathy and sepsis. As major
symptoms of acute central nervous system impairment, almost 80% of
these paroxysmal events occur in the first two days of life [2]. The
estimated incidence of seizures is between 1‰ and 3.5‰ in full-term
newborns and even higher in preterm infants [3]. Essentially, four

main clinical seizure types can be recognized in neonates, namely:
subtle, clonic, tonic and myoclonic [1]. Prompt and accurate detection
of neonatal seizures is crucial to administer timely treatments that may
prevent further seizure-induced brain damage. It is important to stress
that the various categories of neonatal seizures are characterized by
very different kinds of movements and require different analysis
approaches. This article analyzes the monitoring of clonic seizures.
Analysis systems for other types of neonatal seizures are discussed in
the following articles: [4,5] for subtle seizures, [6] for myoclonic
seizures.

Apneas consist of the temporary absence of spontaneous respira-
tion [7], which manifests itself by the lack of breathing movements for
a certain time period. Seizures, cerebrovascular events [8] and con-
genital diseases, such as Congenital Central Hypoventilation Syndrome
(CCHS) [9], are among the main causes of these events in the neonatal
period. CCHS, also referred to as Ondine's curse, is a life-threatening
disorder. Discovered as a disease caused by mutations in the paired-
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like homeobox 2B (PHOX2B) gene, CCHS manifests itself, in the
neonatal period, especially during quiet sleep, with cyanosis, apnea
events or even cardiorespiratory arrests [9]. CCHS is a relatively rare
disorder: in fact, just approximately 1000 individuals with this condi-
tion have been identified. Researchers believe that some cases of
Sudden Infant Death Syndrome (SIDS) may be caused by undiagnosed
CCHS [10].

Monitoring of vital signs for the diagnosis of such type of diseases is
possible almost exclusively in hospital environments. Currently, the
standard monitoring systems are based on ElectroEncephaloGram
(EEG) polygraphy and polysomnographic devices [11], composed of
several wired sensors directly connected to the body of the patient:
electrodes positioned on the scalp, chest and other body parts, elastic
belt around the chest, nasal flow meter and pulse oximeter. The
polysomnographic device allows to monitor the brain electrical activity,
the cardiac and muscular activities, the respiratory movements, the
breathing pattern and the blood oxygen saturation. These systems,
typically used for short-term monitoring, are expensive, time-consum-
ing, moderately invasive (especially for newborns), and require experi-
enced medical staff, not always available full-time in a Neonatal
Intensive Care Unit (NICU). For home monitoring, many systems are
available, but they may require sensors attached to the body of the
newborn (e.g., smart bed [12], wearable sensor system [13]). At the
opposite, the objective of our research is to study a contact-less
monitoring system. Thus, automatic, real-time and non-invasive
equipment able to reliably recognize these diseases would be strategic
in hospital environments, helping to monitoring 24/7 all the newborns
present in a NICU, or even at home, in order to implement remote
monitoring systems, reducing time and cost of hospitalization.

An attractive contact-less monitoring tool to automatically detect
movement- or breathing-dependent diseases, such as seizures or
breathing disorders, may rely on properly processing video signals,
acquired through single or multiple video cameras. The movements of
the newborn's body (e.g., limbs and chest), framed by the cameras, can
be analyzed to detect specific behaviors which may be symptoms of
neurological dysfunction.

In [14], the acquisition, through sophisticated video processing, of
the motion strength was proposed as expedient to detect the presence
of neonatal seizures. In [15], the authors used an optical flow-based
technique to track and characterize the movements of a newborn
during prolonged monitoring. Neural networks were then used to
obtain a diagnosis based on a previous training phase. Taking into
account the long monitoring time and the fact that the implementation
of long reliable tracking of jerky movements of the newborn limbs may
be very complex, this approach is not suitable for real-time detection
and requires expensive hardware for accurate optical flow processing
(especially for dense optical flow techniques). In [16], a real-time video
processing-based approach to the detection of neonatal clonic seizures
based on recognition of characteristic periodic movements, was
proposed. This approach relies on a periodicity detector, based on
hybrid pitch estimation, to analyze a motion signal extracted from the
video. This method has also received attention in the medical literature
[17].

In this paper, an improved method to estimate the periodicity of
pathological movements, based on the use of the Maximum
Likelihood (ML) criterion [18], is presented. In particular, motion
signals from multiple digital cameras or depth-sensor devices (e.g.,
Kinect [19]) are extracted and properly processed in order to detect
potential abnormal motor patterns. We propose a monitoring system
based on the detection of pathological movements, characterized by the
presence or absence of a significant periodic component (i.e. rhythmic
movements). Thus, the field of application includes any disease
presenting this type of symptoms: clonic seizures and CCHS are
relevant examples. The novelty lies in combining known techniques
(more or less recent) to create an innovative monitoring system that is,
unlike existing systems, contact-less and low-cost. In fact, as an

example, we were able to develop an Android application, denoted as
Smartphone-based Contactless Epilepsy Detector (SmartCED), able to
capture images through the phone camera and detect the occurrences
of clonic seizures: the computing resources of modern smartphones
have proven to be sufficient for our purpose [20]. This paper unifies
and expands preliminary contributions [21,22]. The approach behind
these two studies, namely, detection and estimation of periodic move-
ments, is common, so that a unified vision is here proposed.

The remainder of the paper is organized as follows. In Section 2, the
method for the analysis of periodic movements is described. In
Section 3, performance results are presented. Finally, in Section 4
conclusions are drawn.

2. Video processing for periodic motion analysis

2.1. Extraction of temporal motion signal

Extraction of a relevant motion signal from every sensor is the first
key step of the proposed approach. The application to standard Red,
Green and Blue (RGB) [23] cameras is initially presented, and the
extension to depth sensors is later discussed.

We start considering a video (i.e., a sequence of frames) with
sampling period T. Frames are numbered as i = 1, 2, …, specifying the
indexes related to time instants as integer multiples of T. Each frame is
described by a matrix of W H× pixels. The images acquired by every
camera are processed, through a sequence of standard image proces-
sing operations, in order to highlight the movements of the body parts
[23]. Following the approach in [16], every frame is first converted to
gray scale; then, a simple Finite Impulse Response (FIR) filtering
operation based on the difference between consecutive frames is
performed. With the objective of a low computational complexity, the
resulting frames can be converted to a binary scale and the erosion
morphological operation [23] can be applied. In this way it is also
possible to reduce some residual noise, as discussed in [16]. The
resulting binary-element frame matrix is denoted as I i[ ]s , i ∈ 1, 2, …,
where the subscript s identifies the s-th sensor. Since a binary image is
composed of white pixels (having a luminance value equal to 1) and
black pixels (having a luminance value equal to 0), a spatial average
luminance signal L i[ ]s can be defined as:

∑ ∑L i
WH

I x y i[ ] ≜ 1 [ , , ]s
x

W

y

H

s
=1 =1 (1)

where I x y i[ , , ]s is the x y[ , ] entry of I i[ ]s . Thus, the signal L i[ ]s is the
average number of white pixels in the i-th binary frame I i[ ]s coming
from the s-th sensor. This signal may represent the movement
“pattern” of the involved body parts and is also referred to as motion
signal.

In Fig. 1, illustrative examples of average luminance signals,
extracted from a single RGB camera according to the above procedure,
are shown, considering: (a) a clonic seizure and (b) random move-
ments. For a comparison of the signal obtained by this technique with
the corresponding EEG signal associated with the same clonic seizure,
the reader is referred to [16].

2.2. Maximum-likelihood approach for periodicity detection

Once the motion signals from every sensors have been extracted, a
method to decide on the possible presence of a periodic movement is
needed. Since the diseases under study have in common symptoms
described by the presence or absence of quasi-periodic movements, the
goal is to determine whether the extracted signals have a common
periodic component and, if so, to estimate its frequency. To this
purpose, the motion signal in (1) related to the s-th sensor is assumed
to be modeled as:
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L i c A πfTi ϕ n i[ ] = + cos[2 + ] + [ ]s s s s s (2)

where cs is a continuous component, n i{ [ ]}s is a sequence of indepen-
dent identically distributed (i.i.d.) zero-mean Gaussian noise samples
and As, ϕs, f are amplitude, phase, and frequency, respectively, of the
periodic component. The sampling period T is assumed identical in all
signals. The periodic component of interest is assumed to have the
same frequency on all sensors, whereas continuous components,
phases and amplitudes are expected to take on different values for
each sensor. The main goal is to detect the presence of a common
sinusoidal component and estimate its frequency f. The signals coming
from multiple sensors have to be aggregated using data fusion
principles, in order to reinforce the estimation of the common
parameter f.

The ML estimation of As, ϕs and f can be achieved minimizing the
following likelihood function [18]:

∑ ∑J A f ϕ L i A πfTi ϕ( , , ) ≜ ( [ ] − cos[2 + ])s s
s

S

i

N

s s s
=1 =1

2

(3)

where N is the number of consecutive video frames (i.e., an N-frame
window), S is the number of sensors and L i{ [ ]}s i

N
=1 are the observed

samples for the s-th sensor.
Under the assumption of i.i.d. zero-mean Gaussian noise, after

standard algebraic manipulations, the approximate ML frequency
estimator is [18,24]:

∑ ∑f L i e= argmax [ ] .
f s

S

i

N

s
j πfTi

=1 =1

− 2
2

(4)

The s-th term of the outer sum in (4) represents the periodogram of
L i[ ]s and, thus, its peak indicates the most significant harmonic
component and identifies the estimated frequency. Note that it is
possible to estimate the frequency from one sensor alone using (4) with
S=1.

After frequency estimation, every amplitude components As can be

estimated as [24]:

∑A
N

L i e s S= 2 [ ] = 1, 2, …, .s
i

N

s
j πf Ti

=1

− 2

(5)

A significant periodic component is declared if a certain threshold η is
exceeded according to:

∑N
S

A η> .
s

S

s
=1

2

(6)

The threshold η must be experimentally set in order to maximize the
system performance.

The signal in Fig. 2(a) is relative to the movements of a sleeping
cat's chest. This signal was extracted from a video realized with a single
camera with a sampling rate of 15 frames/s: rhythmic movements are
clearly visible. In Fig. 2(b), the corresponding likelihood function is
shown as a function of f and the estimated frequency f (in correspon-
dence with the peak of the likelihood function) is highlighted.

According to (3)–(6), the described ML method operates on
sequences of N frames; hence, the periodicity can be analyzed on
disjoint temporal windows of duration NT. However, a motion-related
symptom of a disease could manifest itself across two consecutive
windows and the algorithm could miss the detection in both windows
[16]. To avoid these cases and improve detection performance, the
analysis of interlaced windows is considered, using an interlacing factor
(i.e., the percentage of overlap of consecutive windows) equal to 50%.

2.3. Use of a depth sensor

Microsoft Kinect [19] is a device that associates a standard RGB
video stream with a depth map stream. The provided depth informa-
tion can be used to improve the ability of a standard video-based
system to distinguish pathological movements from background noise
or random movements not concerning the framed patient.
Nevertheless, these depth estimating systems are afflicted by a sig-
nificant and systematic issue: the shadowing noise [25]. This problem,

Fig. 1. Examples of extracted average luminance signals: (a) clonic seizure and (b)
random movements.

Fig. 2. (a) Example of a rhythmic motion signal and (b) corresponding periodogram
from the likelihood function.
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common to all structured-light approaches which use an offset camera
to determine a depth map, consists of the presence of regions where the
projected pattern is shadowed by foreground objects, making it
impossible to estimate the corresponding depth. Because of this issue,
it becomes difficult to apply a simple difference between consecutive
depth frames: in fact, in the processed image, besides movement parts,
background areas could not be correctly detected.

For the sake of limiting the shadowing noise, a background-fore-
ground segmentation approach can be used. To this purpose, the
Mixture-of-Gaussian method described in [26], which is based on [27],
is employed. The aim is to build a foreground mask, i.e., a binary image
of the same sizeW H× of the video frame, where white and black pixels
refer to ones in the original frame belonging to foreground or back-
ground, respectively. Applying the background-foreground segmenta-
tion to the RGB frame and the obtained mask to the depth frame, it is
possible to filter out all unnecessary pixels.

Fig. 3 shows (a) an RGB image, (b) the associated depth map, (c)
the foreground mask extracted from the RGB image, and (d) the depth
map filtered by the foreground mask.

After the depth sequence has being denoised, according to the
above procedure, the motion signal can be extracted by the same
technique described in Subsection 2.1.

2.4. Application of Eulerian video magnification

The proposed algorithm in Sections 2.1–2.3 is a reliable approach
to monitor and analyze large and clearly visible body movements. If
motions of interest are subtle, like respiration, they can be easily
confused with noise or small environmental changes. The methods
described above may not be sensitive enough to handle these move-
ments, especially for breathing disorders, because the small excursion
of a newborn's body parts may be difficult to detect. To improve
detection of such small movements, a motion magnification algorithm
can be applied; the proposed solution relies on a video pre-processing
algorithm, in order to amplify motions of interest, followed by the
approach described above. The employed motion magnification meth-
od, known as Eulerian Video Magnification (EVM) algorithm, was
proposed in [28] to overcome the spatio-temporal restrictions of the
human visual system for revealing subtle changes in video signals. The
EVM algorithm consists of a cascade of spatial multi-scale frame
decomposition and temporal processing, with a final reconstruction
into a new video where small changes in the framed area are enhanced

[28].

3. Performance analysis

The acquisition system used at the NICU of the University Hospital
of Parma and some illustrative examples of images acquired from a few
cameras are shown in Fig. 4. The system is composed of three cameras:
the first two cameras are arranged orthogonally in order to frame the
baby by the front and the side, the third one is attached to the cradle to
frame the face of the newborn [4]. In the following, the use of the first
camera only will be initially considered. Then, performance results
using all three cameras will be discussed. A multi-sensor system is less
affected by the patient's position, because all main viewing angles are
monitored by different sensors. Using a single sensor system, instead,
the performance may degrade.1

Examples of motion analysis by video processing according to the
methods described in Section 2 are provided as supplemental material.

3.1. Detection of neonatal clonic seizures

A neonatal clonic seizures is characterized by a duration of at least
10 s [1] with a period ranging between 0.5 s and 3.5 s [29].
Accordingly, the monitoring system described in Section 2 has been
calibrated to temporal windows of 10 s, thus the value of N in (4)
becomes f10 s, where fs is the sampling rate. As an example, for a
camera with a sampling rate of 25 frames/s, N will be 250 frames.

The performance of the proposed detection system is investigated
considering a binary test, which classifies results as “presence of clonic
seizures” in the video of the newborn (positive) and “absence of
movements or presence of random movements” (negative). The
performance of a clinical binary test is typically presented in terms
sensitivity and specificity, which are defined, respectively, as follows
[30]:

α
n

n n
≜

+
TP

TP FN (7a)

β
n

n n
≜

+
TN

TN FP (7b)

where nTP, nTN, nFP, and nFN denote, respectively, the numbers of True
Positives, True Negatives, False Positives, and False Negatives in the
sequence of all considered windows. A perfect predictor would have a
sensitivity α = 1 (e.g., all sick individuals would be correctly identified
as sick) and a specificity β = 1 (e.g., no healthy individuals would be
incorrectly identified as sick). We shall refer to sensitivity and
specificity values in terms of the corresponding percentages, i.e. α100
and β100 , respectively.

Initially, results based on the retrospective off-line analysis of 10
single camera-based video recordings of newborns are presented. A
single sensor, i.e., S=1 in (4)–(6), and a standard linear combination of
the RGB signals for conversion to gray scale are considered, with
corresponding weights wR=0.299, wG=0.587 and wB=0.114 [31]. We
refer to this sensor as Black & White (B &W). The set of videos has
been chosen to represent all possible behaviors of a newborn (no
movements, natural movements, pathological movements). Each video
has these settings:

• sampling rate: 25 frames/s T( = 40 ms);
• resolution: 360×288 pixels;

• length: 5 min.

Fig. 3. Background-foreground segmentation starting from data acquired by RGB and
depth sensors.

1 This system is very versatile and is suitable for many kinds of sensors. It is
convenient to use the most suitable sensor for the environment of interest. In case of
low light conditions it is recommended the use of an infrared sensors or high
performance cameras.
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In order to evaluate the performance of the proposed system, we have
considered only 284 of the 580 available interlaced windows, discard-
ing windows without movements. In fact, without discarding these
windows, an unrealistic increase in specificity (7b) can occur, because
all the windows without movements would be too easily classified by
the algorithm as negatives. The corresponding results are shown in
Table 1, where real patient conditions are compared with results
obtained by the video-processing system in terms of nTP, nTN, nFP and
nFN. The corresponding sensitivity and specificity are then evaluated
according to (7a) and (7b).

In Fig. 5, the Receiver Operating Characteristic (ROC) curve [32],
obtained by varying the decision threshold η in (6) and used to measure
the performance of the system, is shown. The obtained minimum
euclidean distance D from the “ideal” operational point (0, 1), i.e., the
point associated with sensitivity and specificity both equal to 1, is 0.14
and the Area Under Curve (AUC) is 0.95. Note that, in the medical
literature, a test with AUC between 0.9 and 1 is considered as highly
reliable [32].

Using the same set of video recordings, the achievable performance
using just one color channel of a single RGB sensor is investigated. This
option is equivalent to a particular linear combination in which only
one of the three weights wR, wG and wB is set to 1, whereas the other
two are set to 0. The corresponding results are shown in Tables 2, 3 and
4 for the Red, Green and Blue channels, respectively. These tables can
also be compared with Table 1 relative to the standard RGB linear
conversion to gray scale (i.e., B &W). This analysis shows that the sole
green channel yields a performance similar to that obtained by the use
of the standard linear combination of the three channels. Since the
standard conversion to gray scale is not necessarily optimal, a slightly
larger value of β, using a single color channel, is indeed possible.

Multi-sensor video recordings can increase the reliability of the
detection system. With this in mind, the performance of the system,
using the three channels of the RGB sensor as if they were single
monochrome sensors, is analyzed, combining the extracted signals
according to the ML criterion in (4)–(6) with S=3. In Table 5, the

obtained results are shown. It may be worth underlining how the use of
the ML criterion allows to achieve a performance better than or equal
to that of any of the considered linear combinations of the 3 RGB
channels (i.e., gray scale or single color channels).

As a different application of multi-sensor processing, a gray-scale
camera is augmented with a depth sensor [19], namely S=2 is
considered in (4)–(6). The necessary video and depth signals are

Table 1
Detection of clonic seizures (one B&W camera).

Real Positive Real Negative

Positive Test n = 51TP n = 16FP
Negative Test n = 7FN n = 210TN

Performance Sensitivity: 88%
Specificity: 93%

Fig. 5. ROC curve, using one RGB sensor.

Table 2
Detection of clonic seizures (red channel).

Real Positive Real Negative

Positive Test n = 44TP n = 8FP
Negative Test n = 14FN n = 218TN

Performance Sensitivity: 76%
Specificity: 96%

Table 3
Detection of clonic seizures (green channel).

Real Positive Real Negative

Positive Test n = 49TP n = 10FP
Negative Test n = 8FN n = 217TN

Performance Sensitivity: 86%
Specificity: 96%

Table 4
Detection of clonic seizures (blue channel).

Real Positive Real Negative

Positive Test n = 44TP n = 13FP
Negative Test n = 13FN n = 214TN

Performance Sensitivity: 77%
Specificity: 94%

Fig. 4. (a) Acquisition system; 1,2,3: position of the cameras and (b) corresponding
frames.

L. Cattani et al. Computers in Biology and Medicine 80 (2017) 158–165

162



obtained using an RGB-depth sensor in the position of camera 1 in
Fig. 4. Two video recordings of a newborn are considered: in the first
one, the newborn performs pathological movements related to a clonic
seizures; in the second one, instead, he performs only physiological
movements. Each video has these settings:

• sampling rate: 30 frames/s T( = 33.333 ms);
• resolution: 640×480 pixels;

• length: 10 min.

Considering 10 s half-interlaced windows, we could analyze 238
observation windows. The results shown in Table 6 confirm the
effectiveness of the proposed approach.

Finally, the results based on the analysis of four recordings of a
newborn with three cameras as shown in Fig. 4, i.e., S=3 in (4)–(6), are
presented. Standard conversion to gray scale is used for each camera.
In the first two videos, the baby performs pathological movements
(related to clonic seizures); in the second two videos, instead, he
performs only physiological movements.

Each video has these settings:

• sampling rate: 25 frames/s (T=40 ms);

• resolution: 360×288 pixels;

• length: 1 min.

Considering 10 s half-interlaced windows, we could analyze 44
observation windows. In Fig. 6, the results obtained using individual
cameras (S=1) are compared with the results obtained using various
combinations of the three available cameras (S=2 or S=3). Each
considered case is represented by the point of coordinates α β( , 1 − ).
It clearly emerges how the use of multiple cameras may significantly
improve the system performance, especially in the presence of clonic
movements of limited amplitude, as in the case of the considered
videos.

3.2. Detection of apneas

Clinically, an apnea event is defined as an episode of absence of
breathing lasting at least 20 s. The medical literature defines as apneas
also the episodes of absence of breathing lasting between 10 s and 20 s,
provided that they are associated with other clinical signs/symp-
toms [33]. In order to detect apnea events, we first emphasize the
respiratory movements with the EVM algorithm presented in [28], then
the proposed methods can be used to extract the chest motion signal
from a set of sensors. In Fig. 7, the motion signal extracted from a video
sequence of an abnormal event is shown. A single RGB camera with
conversion to gray scale is considered. As it can be observed, the time
period without breathing movements is clearly highlighted.

We now present the results of a retrospective analysis performed on
the video of a newborn, who previously received a timely diagnosis of
central apneas by means of a polysomnogram. As ground truth, the
results obtained by the video-EEG polysomnography with thermistor
and a pletismopgraph, lasting a total of 1 h and 35 s, are considered.

These indicate:2 23 apnea episodes with a total duration of 28 min and
31 s, and an average single apnea duration of 74 s. In Fig. 8, a
comparison between the motion signal extracted by the proposed
system and the pneumographic signal, considered as the ground truth,
is shown. For performance analysis, we discarded 6 of these available
23 apneas, because: in 4 of them the cameras were covered by medical
personnel; 2 of them were too short (less than 20 s), since our system is
set up to detect apneas of at least 20 s. The performance of the
proposed monitoring system is investigated, once again, considering a
binary test, which classifies results as “presence or absence of breathing
movements.” Sensitivity and specificity are redefined, in analogy with
(7a) and (7b), in terms of TTP, TTN, TFP, and TFN, which denote,
respectively, the total duration of the time intervals with apnea
correctly detected (True Positives), no apnea correctly detected (True
Negatives), normal breathing incorrectly reported as apnea (False
Positives) and apnea incorrectly reported as normal breathing (False
Negatives). In the evaluation of these time intervals, a Tolerance
Delay (TD), defined with respect to the end of the first processing
window where the apnea episode can be detected, is considered. An
apnea episode is assumed correctly detected if the algorithm reports it
within a time interval not longer than the assigned TD. Fig. 9 helps to
better understand this concept, as here a long apnea is considered and
consecutive interlaced windows are shown: different TDs are shown
jointly with consecutive observation windows. As TD increases, a larger
number of interlaced windows fall inside the TD, thus increasing the
probability of correctly detecting the presence of an apnea. In the upper
part of Fig. 9, examples of detection results are shown; for a value of TD
equal to 0 s, the apnea episode is missed, whereas for TD equal to 10 s,
20 s or 30 s, it is correctly detected. In Table 7, the sensitivity and
specificity values obtained by the proposed method are shown,
considering various values of the assumed TD. In particular, sensitivity
and specificity are computed by considering the portions of minutes of
apnea (out of 22 min) and regular breathing (out of 38 min) correctly/
incorrectly diagnosed. The proposed system was able to correctly detect

Table 5
Detection of clonic seizures – 3 RGB channels.

Real Positive Real Negative

Positive Test n = 50TP n = 9FP
Negative Test n = 7FN n = 218TN

Performance Sensitivity: 88%
Specificity: 96%

Table 6
Detection clonic seizures (B &W and depth sensors).

Real Positive Real Negative

Positive Test n = 138TP n = 10FP
Negative Test n = 12FN n = 78TN

Performance Sensitivity: 92%
Specificity: 88%

Fig. 6. Performance of clonic seizure detection with different configurations of 3 RGB
cameras.

2 Due to the documented dysregulation of respiratory control, during the recording the
patient was also monitored by an elastic belt sensor, a nasal flow-meter and a pulse
oximeter. Furthermore, oxygen therapy was applied using nasal cannulas whenever
clinically indicated.
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from 13 to 17 episodes, out of a total of 17, depending on the
acceptable TD. Interestingly, all apnea episodes are correctly detected
using the maximum TD of 30 s.

We remark that the system was also tested in the presence of
blankets covering the newborn. The obtained results, with an example
visible in the supporting material, show that the small movement

enhancement method may indeed enable a correct detection of the
diseases.

4. Conclusion

This paper describes a unified wire-free, low-cost, non-invasive
technique for automatic detection of abnormal paroxysmal events in
newborns, namely, clonic seizures and life-threatening apnea events.
According to the proposed approach, motion signals are extracted from
RGB cameras or depth sensors in order to estimate whether a periodic
component is present, which is the characteristic feature of clonic
seizures or breathing movements. In the case of apnea detection, the
video may be pre-processed using the EVM technique, in order to
emphasize small breathing movements (e.g., chest/abdomen move-
ments). The diagnostic performance of the detection systems has been
analyzed by comparison with the gold standard represented by the
video-EEG polysomnography. The results are very promising, as they
show that it is indeed possible to identify both clonic seizures or apnea
events with contact-less devices. This innovative detection system
could represent a timely, user-friendly and 24/7 tool to be used in
the NICU or at the patient's home in order to monitor newborns with
severe diseases.

Standard protocol approvals, registrations, and patient
consents

In accordance with current practice at our Institution, an informed
consent form was signed by parents of each newborn patient, and the
informed consent was placed in the patients' hospital chart. The Ethic
Local Committee approval to perform retrospective studies was
obtained.

Conflict of interest statement
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Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.compbiomed.2016.11.
010.
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